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Instability threshold of gaseous detonations
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The spectrum of linear modes governing the multidimensional instabilities of gaseous
detonations is revisited by combining a numerical analysis with new analytical results.
In view of recent develop̀ments in nonlinear analyses for describing the cellular
structure of weakly unstable detonation fronts, particular attention is paid to the
neighbourhood of the instability threshold. A first objective is to check the validity
domain of the analytical results and to investigate to what extent they are useful
when approaching the self-sustained regime (Chapman–Jouguet conditions). A second
objective is to study how the multidimensional instabilities are influenced by multiple-
step chemistry. The roles of the induction period and of the stiffness of the exothermic
runaway will be investigated separately.

1. Introduction
A detonation consists of a strong inert shock followed by a subsonic reacting

flow which is described by the reactive Euler equations. The pioneering analysis of
Erpenbeck (1964) showed that a planar detonation may be stable when the heat release
is sufficiently small. A detailed study of the neighbourhood of the instability onset
is a preliminary step in studying the cellular structures by a nonlinear analysis of a
weakly unstable detonation. Such a weakly nonlinear analysis consists of a systematic
reduction in complexity, taking into account the leading-order nonlinearities near
threshold. Does the same reduction continue to be meaningful under real conditions
of strongly unstable detonations? No answer can be given with certainty, but
understanding of strong instabilities may nevertheless be enhanced by investigating
their onset. For example, the weakly nonlinear analysis of Clavin & Denet (2002)
predicts time-dependent patterns similar to those observed in experiments. The leading
nonlinear mechanisms of a weakly unstable detonation in the multidimensional
case are different from those in planar geometry: in a galloping detonation (one-
dimensional case) they come from the heat-release rate, see Clavin & He (1996), while
they are concerned with the Reynolds stress in the diamond patterns of a cellular
detonation, see Clavin & Denet (2002).

Stability limits of detonation waves were first investigated by numerical analyses
of the linear spectrum of the problem, see the pioneering work of Erpenbeck (1964,
1965) and the more recent works of Lee & Stewart (1990) and Short & Stewart
(1998). The instability of a strongly overdriven wave was explained few years ago
by Clavin & He (1996) and Clavin, He & Williams (1997) within the framework
of two approximations: a small difference between the specifics heats, (γ − 1) � 1,
γ ≡ cp/cv , and a large Mach number of propagation, M̄2

U � 1. The multidimensional
instability of a planar wave occurs when the heat release as a fraction of the enthalpy
of the post-shock gas (Neumann spike, subscript N ) q ≡ Q̂/cpT̄ N , is increased above
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a critical value which is as small as the two parameters (γ − 1) and 1/M̄2
U . By taking

all these small parameters to be of same order of magnitude, the neighbourhood
of the instability threshold has been described by the linear analysis of Clavin &
He (2001). This asymptotic analysis is valid for general irreversible chemistry but
is restricted to large overdrive. The simplification comes from the approximation
of low Mach number, valid everywhere across the detonation structure (behind the
leading shock), leading to a clear distinction between the isobaric gas expansion and
the compressibility effects (acoustics), yielding a convenient way to shed light on the
physical mechanisms that are competing near threshold.

Ordinary detonations are strongly unstable with a moderate degree of overdrive and
thus are outside the domain of validity of the above-mentioned analyses. However, by
considering a large density jump across the leading (strong) shock, M̄2

U � 1, occurring
at large overdrive near the stability limits, an essential feature of the dynamics of real
detonations is taken into account, namely a large deflection of the streamlines across
the wrinkled shock. On the other hand, for small overdrive, near Chapman–Jouguet
(C-J) conditions, the propagation Mach number of a weakly unstable detonation is
close to unity, and the density jump is small. Therefore, when attention is limited to
weakly unstable detonations, it is worth considering the limit of a large degree of
overdrive.

This paper presents a study of the linear dynamics of detonation waves near
threshold for a wide range of overdrive and different chemical kinetics. The objective
is to provide a solid background for further nonlinear studies of the diamond patterns
of a cellular detonation front. A comparison between numerical and analytical results
is presented. The first part of the paper determines to what extent the results of
Clavin & He (2001) may be still useful when the quasi-isobaric approximation fails
on approaching the C-J regime. The problem is addressed also by comparison with
another perturbation analysis by Short & Stewart (1999). In their analysis, which
is free from assumptions concerning (γ − 1) and M̄2

U , Short & Stewart (1999) used

Q̂/RT̄ N as a small parameter together with a one-step Arrhenius model (Q̂ is the
heat release and R ≡ (cp − cv) the gas constant of a perfect gas). They also limit their
attention to sufficiently small activation energies so that the rate of heat release is a
monotonic function decreasing with the distance from the shock. This model provides
a simple framework within which to check the validity domain of a perturbation
method based only on a small parameter Q̂/RT̄ N .

The asymptotic solution of Clavin & He (2001) is valid for Q̂/RT̄ N ≡ γ q/(γ − 1)
of order unity, as is the case at instability threshold for moderate and small overdrive,
as will be seen later, see for example figure 6. Moreover, the analysis is free from
assumptions concerning the kinetics of the irreversible heat release. The dynamics
of a detonation front being very sensitive to the chemical kinetics, the possibility of
investigating any distribution of heat-release rate is particularly convenient for
studying real detonations. The second part of the paper is devoted to the effects
of multiple-step chemistry near threshold. The influences of the induction delay and of
the stiffness of the exothermic runaway (ratio of the runaway time to the induction
delay) upon the linear spectrum are investigated in the multidimensional case by a
numerical analysis in the light of the analytical results of Clavin & He (2001). This
is carried out for a wide range of overdrive within the framework of the three-step
chemistry model considered previously by Short & Dold (1996) and later by Sanchez
et al. (2001). The occurrence of high-frequency modes and short wavelengths at the
instability threshold is investigated.
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The paper is self-contained and has the following structure. Results of Short &
Stewart (1999) and of Clavin & He (2001) are briefly recalled in § 2. An outline of
the later analysis is given in Appendix A, where particular attention is paid to the
key points ensuring the validity of the results for Q̂/RT̄ N of order unity. An overall
physical understanding of the mechanisms competing near threshold is also provided
in § 2. A comparison of the two analyses is presented in § 3, where a common domain
of validity is exhibited for large overdrive. A systematic comparison with numerical
results is provided in § 4 for moderate overdrive. Section 5 is devoted to the effects
of multiple-step chemistry. The influences of parameters such as the induction time
and the stiffness of the thermal runaway are investigated. A conclusion is given
in § 6.

2. Theoretical background
In a one-dimensional unperturbed detonation wave, the flow Mach number M̄

(relative to the shock) increases with the heat release from its post-shock value
(M̄N < 1) to its value at the end of the chemical reaction (M̄B � 1), M̄N � M̄ � M̄B .
At the end of an irreversible reaction, the flow becomes just sonic in a self-sustained
detonation (C-J wave), M̄B,CJ = 1, while it remains subsonic when the detonation is
piston-supported (overdriven waves) M̄B < 1. The degree of overdrive is defined as
f ≡ (M̄U/M̄U,CJ )2 where M̄U is the shock-propagation velocity divided by the sound
speed in the initial mixture and M̄U,CJ is the propagation Mach number of the self-
sustained wave. The faster the piston is, the larger is M̄U and the smaller are M̄N and
M̄B . Within a perfect gas approximation, the propagation regime is fully determined
by three parameters, namely the specific heats ratio γ = cp/cv , the propagation Mach
number M̄U (or f ) and the heat release divided by the post-shock gas enthalpy,
q ≡ Q̂/cpT̄ N . The inner structure is controlled by the chemical kinetics. Ordinary
detonations are strongly unstable with a moderate degree of overdrive (f ≈ 1). As
a rule, they exhibit a large density jump across the leading shock (M̄2

U � 1); typical
density ratios are larger than 6 and may reach 10 in gaseous detonations.

2.1. Analysis of Clavin & He

Weakly unstable detonations with a large density jump exist only when f � 1. These
regimes are studied by Clavin & He (2001) within the approximation (γ − 1) � 1 by
a perturbation method based on a small parameter ε defined as

ε2 ≡ γ M̄2
N ≈ (γ − 1)/2 + 1

/
M̄2

U � 1 (2.1)

(typical values are γ ≈ 1.2–1.3, M̄2
U ≈ 30, M̄2

N ≈ 0.15–0.18). Stability or weak
instability then occurs when q is as small as γ − 1 and 1/M̄2

U and the distinguished
limit to be considered is

γ − 1 = O(ε2), 1
/
M̄2

U = O(ε2), q ≡ Q/cpT̄ N = O(ε2). (2.2)

The previous analysis of Clavin et al. (1997) for q = O(1), corresponded to more
unstable detonations and did not include conditions near threshold.

Defining the position of the wrinkled shock as x̂ = α̂(t̂ , ŷ), with t̂ denoting the
time and x̂ and ŷ the longitudinal and the transverse coordinates, we introduce
the non-dimensional coordinates ξ ≡

∫ x̂

α̂
ρ̂(x̂ ′, t̂) dx̂ ′/(ρ̄N d̄) (the shocked gases are in

the region ξ > 0), η ≡ ε ŷ/d̄ and τ ≡ t̂/t̄N , where ρ̂ is the density, t̄N is the post-
shock reaction time defining the transit time of a fluid particle across the detonation
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structure, and d̄ is the detonation width, d̄ ≡ ūN t̄N , ūN being the post-shock flow
velocity relative to the shock. Scaling of the transverse coordinates is dictated by

the range of unstable wave-lengths, λ̂ ≈ d̄/ε, resulting from a resonance between

the neutral modes of the leading shock (with a frequency ω̂ ≈ 2πāN/λ̂, where āN is the
sound speed in the compressed gas, see D’yakov 1954 and Kontorovich 1957) and the
oscillatory instability of the shock–reaction complex (frequency ω̂ ≈ 1/t̄N , see Clavin
et al. (1997)). In the linear approximation ϕ(ξ, η, τ ) = ϕ̄(ξ ) + δϕ(ξ, η, τ ), where δϕ

denotes the perturbation, and in a Fourier representation, α(η, τ ) = α∗ exp(sτ +iκ · η),
δϕ = δϕ∗(ξ ) exp(sτ + iκ · η), where superscript * denotes Fourier components and

where the complex growth rate σ̂ and the transverse wave vector k̂ have been reduced
according to

s = σ̂ t̄N , κ =
k̂d̄

ε
; (2.3)

the eigenvalue s(κ) is obtained in the limit (2.2) in the form of an expansion

s(κ) = s0(κ) + ε2s2(κ) + O(ε4). (2.4)

The leading-order solution s0(κ) corresponds to the oscillatory modes of the inert
shock, q = 0, and is fully controlled by the isobaric entropy–vorticity wave, yielding

∂2

∂τ 2
α − ∇2α = 0 ⇒ s0(κ) = ±iκ, (2.5)

with κ ≡ |κ |, see equations (A 10) and (A 11) in Appendix A. The growth (or damping)
rate Re(s) is small compared to the oscillatory frequency Im(s), (2.5), and is obtained at
the following order of the perturbation analysis by imposing a boundedness condition
at infinity (in the burned gas) to the sound waves. The result may be written in a
compact form as

1

q
Re[s(κ)] = 1

2
Re[s0Z(s0)] − κ

Q

√
1 +

2

(γ − 1)M̄2
U

∣∣Im√
1 + Q[Z(s0) − 1]

∣∣, (2.6)

where (γ −1)M̄2
U and Q are parameters of order unity characterizing the propagation

regime of the unperturbed solution,

Q ≡ 2q

(γ − 1)
=

2

γ

Q̂

RT̄N

= O(1), (2.7)

see Clavin & He (2001) and Appendix A. The influence of the chemical kinetics
appears through the function Z(s0) which is defined by

Z(s0) ≡
∫ ∞

0

w̄′
M̄U

(ξ ) exp(−s0ξ ) dξ +

∫ ∞

0

(1 + s0ξ )w̄(ξ ) exp(−s0ξ ) dξ, (2.8)

where, according to (2.5), s0 = ±iκ . The function w̄(ξ ),
∫ ∞

0
w̄(ξ ) dξ = 1, is the

non-dimensional distribution of heat-release rate across the unperturbed wave, and
w̄′

M̄U
(ξ ),

∫ ∞
0

w̄′
M̄U

(ξ ) dξ = 0, describes its modification when varying the propagation

Mach number M̄U , ε2δw̄(ξ ) = w̄′
M̄U

(ξ )δM̄U/M̄U (w̄′
M̄U

(ξ ) = β(γ − 1)w′
θ (ξ ) in the

notation of Clavin et al. 1997 and Clavin & He 2001). The scaling w̄′
M̄U

(ξ ) = O(1) is

convenint near threshold in the limit (2.2): the sensitivity of the chemical reaction rate
does not influence the stability limits when the order of magnitude of max|w̄′

M̄U
(ξ )| is

smaller than unity, and the detonation is always strongly unstable when it is larger.
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Figure 1. Re[s0Z(s0)] vs. κ for an Arrhenius law with βq = 0.1 and β(γ − 1) = 0, 1 and 5.

The quasi-isobaric gas expansion due to heat release being clearly distinguished
from the compressible effects, the oscillatory instability of the shock–reaction complex
is illuminated by the quasi-isobaric approximation resulting from (2.2), as briefly
explained now; see also the discussion below equation (A 24) in Appendix A.

(i) The isobaric gas expansion is responsible for the instability and is represented
by the first term on the right-hand side of (2.6), see figure 1. The flow Mach number
being small, the leading-order modifications to gas density are due to variations in
heat-release rate and propagate from the inert shock to the burned gases with the
entropy–vorticity wave. The derivative with respect to time of the total post-shock
mass of gas has to be balanced by the mass flux across the shock. When expressed
in the original variables (ξ, η, τ ), this yields an integral equation for the velocity of
the perturbed shock, describing the ocillatory instability, see Clavin & He (2001) and
Clavin & Denet (2002).

(ii) The sound waves triggered in the burned gases have a smaller amplitude than
the entropy–vorticity wave by a factor ε2, see equation (A 13) in Appendix A. Al-
though the pressure variations have a negligible effect upon the energy equation,
sound waves nevertheless produce a negative feedback upon the isobaric combustion
instability through a velocity coupling (see the discussion below equation (A 24)
in Appendix A). This acoustic feedback which is described by the second term
on the right-hand side of (2.6) (negative contribution to Re[s(κ)]) is essential in
multidimensional geometry to damp out the disturbances with small transverse
wavelengths which would be amplified by the quasi-isobaric instability as shown
in figure 1. We will come back to this point a few lines below.

(iii) In one-dimensional geometry the instability, called galloping detonation, results
from the sensitivity of the heat-release-rate distribution |w̄′

M̄U
(ξ )| �= 0, see Clavin &

He (1996). The situation is different in multidimensional geometry. The deflection of
the streamlines across the wrinkled shock perturbs the heat-release-rate distribution
and excites an oscillatory instability even in the absence of chemical sensitivity,
|w̄′

M̄U
(ξ )| = 0, see Clavin et al. (1997). A detonation which is stable to longitudinal

disturbances may then be unstable to multidimensional disturbances. In the following,
we will denote as ‘hydrodynamic instability’ the instability of a detonation wave which
develops when |w̄′

M̄U
(ξ )| = 0 (no chemical kinetics effects) so that Z(s0) reduces to the

second term on the right-hand side of (2.8).
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Figure 2. Profiles of w̄(ξ ) and w̄′
θ (ξ ) for an Arrhenius law with q = 1 and βq = 1, 2 and 4.

To summarize, equation (2.6) describes a competition between a destabilizing
mechanism, the gas expansion due to a quasi-isobaric heat release (first term), and a
damping one due to compressible effects (second term). The existence of a bifurcation
is easily shown from (2.6) by noticing that, for small Q, Q � 1, the damping term
dominates whatever the wavelength,

2

q
Re[s(κ)] → Re[s0Z(s0)] −

√
1 +

2

(γ − 1)M̄2
U

|Re[s0Z(s0)]| < 0, (2.9)

and the planar front is stable. In the opposite limit, Q � 1, the acoustic term
is negligible (except at small wavelengths, see below) and the planar detonation is
unstable to transverse disturbances with κ = O(1). In any case, thanks to the sound
waves, the detonation is stable to disturbances with a small wavelength, κ � 1 (the
second term on the right-hand side of (2.6) is proportional to −κ in the limit κ → ∞
while Z(s0) → 0 and Re[s0Z(s0)] → positive constant, see figure 1).

Equation (2.6) is valid for a general irreversible chemistry. For comparison with
the results of Short & Stewart (1999), a one-step chemical reaction controlled by
an Arrhenius law is considered in § § 3 and 4. In this simple case, the kinetics is
characterized by a single parameter, the reduced activation energy β ≡ E/RTN .
Within the quasi-isobaric approximation, the distributions w̄(ξ ) and w̄′

M̄U
(ξ ) are given

by the solution of the equation w̄(ξ ) = dȲ /dξ = (1 − Ȳ ) exp(βqȲ ) with Ȳ = 0 at
ξ = 0 where Ȳ is the mass fraction of the products, giving w̄′

M̄U
(ξ ) = β(γ − 1)w′

θ (ξ )

where w′
θ (ξ ) ≡ d(ξw̄)/dξ (see Clavin & He 1996 and Clavin et al. 1997). The β

parameter then appears in (2.8) through two quantities, β(γ − 1) and βq . According
to (2.7), Q = 2βq/β(γ − 1), and the right-hand side of (2.6) is fully determined
by three non-dimensional parameters of order unity: (γ − 1)M̄2

U , βq (or Q) and
β(γ − 1). Large values of the reduced activation energy may be retained in the limit
(2.2) when βq = O(1). The double limit β → ∞ and q → 0 is essential to avoid
singularities appearing for an infinitely large activation energy; see the discussion
in Clavin et al. (1997). The parameter βq controls the shape of the distributions
w̄(ξ ) and w′

θ (ξ ) (
∫ ∞

0
w̄(ξ ) dξ = 1,

∫ ∞
0

w̄′
θ (ξ ) dξ = 0), see figure 2, while β(γ − 1)

measures the intensity of the thermal sensitivity. The quasi-isobaric instability is
exhibited by the curve Re[±iκZ(±iκ)] vs. κ (s0 = ±iκ) and typical examples are
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Figure 3. (a) Growth rates Re(s) vs. κ given by equation (2.6) with (γ − 1) = 0.1, β = 10
and M2

U = 50 for an unstable case q = 0.04 (bold solid line) and a stable one q = 0.03 (bold
dashed line). (Non-physical parts are plotted as thin lines.) (b) Frequency, Im(s) vs. κ , for the
unstable case (bold solid line) of (a).

given in figure 1 for βq = 0.1 and for different values of β(γ − 1). In the particular
case investigated by Short & Stewart (1999), βq � 1, the reaction rate becomes
a monotonic function, decreasing with distance from the shock; w̄(ξ ) = exp(−ξ )
when βq = 0. When β(γ − 1) � 1, the heat-release distribution does not vary
much when the propagation regime is changed, the effects of the chemical sensitivity
become negligible, w̄′

M̄U
(ξ ) ≈ 0, and we are dealing with a pure ‘hydrodynamic

instability’.
An example of a dispersion relation near onset of the instability as obtained from

(2.6) with an Arrhenius law is shown in figure 3. The expression Re[s(κ)] given
by (2.6) results from two roots of a quadratic equation when only the branches of
solutions that satisfy a boundedness condition of the acoustic waves in the burned
gas (ξ → +∞ ) are retained. The result is plotted in bold (solid or dashed) lines in
figure 3 and corresponds to two pieces of two different branches (the negative part
of Re[s(κ)] at small κ belongs to a different branch than the rest of the curve). The
non-physical part of the branches is plotted as thin lines. It is worth noticing for the
following (see § 5) that even in the stable case, the intersection of the two branches
leads to the existence of a marginally stable mode, Re(s) = 0, κ �= 0. A simplification
occurs in the case of ‘hydrodynamic instability’ considered in § 4, β(γ − 1) � 1; the
first term on the right-hand side of (2.8) becoming negligible, w̄′

M̄U
(ξ ) ≈ 0, one has

Re[s0Z(s0)] > 0 at every κ (see figure 1). Equation (2.6) then corresponds to the same
branch of solution in the entire κ domain [0, ∞] (see figures 9a, b, 11a, b and 13a, b).

2.2. Analysis of Short & Stewart

Within the framework of an Ahrrenius model with βq � 1 and using a non-
dimensional wave vector k and growth rate σ reduced, respectively, by the half-
reaction length d̄1/2 and the half-reaction time, t̄1/2 ≡ d1/2/āN ,

σ = σ̂ t̄1/2, k = k̂d̄1/2, (2.10)

the dispersion relation obtained by the perturbation analysis of Short & Stewart
(1999) for a small heat release, without any assumption concerning (γ − 1) or M2

U ,
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can be written as

1

q
Re(σ ) =

γ 3(γ + 1)(γ (γ + 1))1/2

4
√

2

1

2
CRe(Σ), (2.11)

where C is given by

C ≡
[

− 2

γ (γ − 1)M2
U

(
2

γ (γ + 1)

)1/2

+
2

√
2(γ − 1)Q

(γ + 1)(γ (γ + 1))1/2
± Q

k
Im(Σ)

]
,

where Σ is a complex function of k ≡ |k|, involving the parameters γ and β(γ − 1),
which is explicitly given in equations (8.35)–(8.36) of Short & Stewart (1999).

By comparison with equation (2.6), equation (2.11) explicitly involves the parameter
γ in addition to (γ − 1)M̄2

U , β(γ − 1) and Q, but it contains only linear terms in
Q. A preliminary comparison of the two dispersion relations is shown in figure 4
for an unstable case with γ = 1.4. The parts of the solution corresponding to
Re(σ ) > 0 look qualitatively similar. No part with Re(σ ) < 0 appears in the results
of Short & Stewart because such parts correspond to incoming acoustic waves. These
authors retain only outgoing waves, while Clavin & He retain all the solutions with
sound waves (incoming or outgoing) bounded in the limit (ξ → +∞). A systematic
comparison is carried out in the two next sections.

3. Theoretical results for large overdrive
The stability limits Q versus (γ − 1)M̄2

U and the critical wavelength λc ≡ 2π/κc

obtained from the theoretical results (2.6) and (2.11) for a detonation sustained by an
Arrhenius law are plotted in figure 5 for (γ − 1)β = 5, in figure 6 for (γ − 1)β = 1
and in figure 7 for (γ − 1)β = 0. When expressed in terms of Q and (γ − 1)M̄2

U the
results given by (2.6) are independent of γ , while those obtained from (2.11) and/or
from numerics depend slightly on γ in the range γ = 1.05–1.2. In figure 5, the values
of the activation energy (β = 100 and β = 25) are higher than assumed in the
analysis of Short & Stewart (1999). This is not the case in figures 6 (β = 5) and
7 (β = 0). However, equation (2.11) is still meaningful at very strong overdrive for
the stability limits in figure 5, because both βq and Q become sufficiently small.
According to the stability limits of figures 5 to 7, the critical value of Q decreases on
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increasing (γ − 1)M̄2
U (increasing the overdrive factor f ). This is true whatever the

activation energy β and the ratio of specific heats γ .
By construction of both analyses, one may expect that equation (2.6) for an

Arrhenius law in the double limit βq � 1 and Q � 1 yields the same result as
equation (2.11) in the double limit (γ − 1) � 1 and f � 1. A good agreement
between the two approaches is effectively observed in figures 5 and 7 for Q � 1
and/or (γ − 1)M̄2

U � 1, corresponding to f � 1. This may be seen directly from the
analytical expressions (2.6) and (2.11) as follows:
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Figure 7. (a) Stability limits Q vs. (γ − 1)M̄2
U and (b) critical wavenumber κc vs. (γ − 1)M̄2

U

obtained with (γ − 1)β = 0 from (2.6) (triangles) and from (2.11) for γ = 1.05 (squares).

(i) In the limit βq � 1, (γ −1)β = O(1), we have w̄(ξ ) = exp(−ξ ), and the integrals
in (2.8) can be easily computed, yielding

Z(s0) ≈ 1 + s0[2 + (γ − 1)β]

(1 + s0)2
. (3.1)

When (3.1) is introduced into (2.6), and when only the terms linear in Q and in 1/(γ −1)
M2

U are retained, a result is obtained which looks similar to (2.11),

1

q
Re(s) ≈ κ2

[1 + κ2]2

[
− κ2

(γ − 1)M̄2
U

− Q

2

κ4(κ2 − 1)

[1 + κ2]2

− 1
2
(γ − 1)β

{
Q

2

κ2

[1 + κ2]2
(1 − 6κ2 + κ4) +

κ2 − 1

(γ − 1)M̄2
U

}

− 1
2
(γ − 1)2β2Q

κ2(1 − κ2)

[1 + κ2]2

]
, (3.2)

valid when (γ − 1) � 1 with

(γ − 1)M̄2
U � 1, Q ≡ 2q

(γ − 1)
� 1, (γ − 1)β = O(1), (3.3)

implying βq � 1. Notice that the result takes an even simpler form when (γ − 1)β
becomes negligibly small (pure hydrodynamic instability): The stability limit Q versus
(γ −1)M̄2

U predicted by (3.2) reduces to a hyperbola, Q(γ −1)M̄2
U = 16, with a critical

wavenumber κc∗ → 1/
√

3 when (γ − 1)M̄2
U → ∞, in agreement with the results in

figure 7.
(ii) On the other hand, in the limit (γ −1) � 1, (γ −1)M̄2

U � 1 and (γ −1)β = O(1),
the expressions for Re(Σ) and Im(Σ) in (2.11) reduce to

Re(Σ) = 2ε ln(2)
κ2

(κ2 + 1)2
[
κ2 + 1

2
(κ2 − 1)(γ − 1)β

]
+ (h.o.t.), (3.4)

1

k
Im(Σ) = ± κ2

(κ2 + 1)2
[1 − κ2 + 2(γ − 1)β] + (h.o.t.), (3.5)
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where the time and length scales used by Short & Stewart (1999) have been expressed
in terms of the scales of Clavin & He (2001) in the form σ = M̄N ln(2)s + (h.o.t.)
and k =

√
γ M̄N ln(2)κ +(h.o.t.), see Appendix B. When (3.4) and (3.5) are introduced

into the dispersion relation (2.11), equation (3.2) is recovered.
To summarize, considering detonations controlled by a one-step Arrhenius law, the

two results (2.6) and (2.12) are equivalent near threshold when (γ − 1) � 1, f � 1
and βq � 1, corresponding to the range of parameters (3.3) describing overdriven
detonations with a distribution of heat-release rate decreasing monotonically with the
distance from the shock. However, according to figures 5 to 7, discrepancies appear
near threshold for moderate overdrive (when decreasing (γ − 1)M̄2

U i.e. decreasing f ),
where Q is no longer small.

None of the analyses of Short & Stewart (1999) (valid for small Q) and of Clavin
& He (2001) (valid for large f ) seem very appropriate for f ≈ 1. How accurate
is equation (2.6), and how much do the results differ from the exact solution for
f ≈ 1? This question, which is addressed in the next section by a comparison
with numerical results, is of importance for the rest of the paper when studying
multiple-step chemistry.

4. Hydrodynamic instability
The numerical analysis of the linear spectrum at the instability threshold is revisited

in this section using the same shooting method as Short & Stewart (1998), see
Appendix C. We limit here our attention to the same model as Short & Stewart
(1999), an Arrhenius law with βq � 1. The objective is to provide a better insight
into the linear dynamics near threshold by carrying out a comparison of the numerical
results with (2.6) and (2.11) and by investigating conditions for small and moderate
overdrive, outside the validity domains of the theoretical analyses. In order to further
simplify the presentation and to emphasize the essential features, it is sufficient to
consider the simplest case of a pure hydrodynamic instability β(γ − 1) � 1. As
indicated by the numerical results plotted in figures 5 and 6, the conclusions are
similar for (γ − 1)β of order unity.

One is thus lead to investigate in more detail the case β = 0. The problem is now
fully determined by three parameters, γ , M̄U and Q. The numerical results for the
stability limits are plotted in a diagram of Q versus (γ − 1)M̄2

U for different values of
γ : γ = 1.05 in figure 8(a), γ = 1.2 in figure 10(a) and γ = 1.4 in figure 12(a). The
numbers shown in these figures are the overdrive degree f . The critical wavenumber
κc ≡ 2π/λc (λc is the critical wavelength) at the bifurcation is plotted in figures 8(b),
10(b) and 12(b) for γ = 1.05, 1.2, 1.4, respectively. Stability limits and κc obtained
from (2.6) and (2.11), previously plotted in figure 7(a, b) for γ = 1.05, are compared
with numerical results in figures 8(a, b), 10(a, b) and 12(a, b) for different γ . Numerical
results concerning the variation of the growth rate with the wavelength, Re[s(κ)], are
plotted in comparison with (2.6) and (2.11) in figures 9(a, b), 11(a, b) and 13(a, b) for
typical values of the parameters. The discussion may be summarized as follows:

(i) Let us first discuss the cases (γ − 1) � 1. The stability limit and κc given
by (2.6) show excellent agreement with the numerical results when γ = 1.05 and
(γ − 1)M̄2

U > 5 (f > 32), see figure 8(a, b). Figure 9(a) illustrates that equation (2.6)
is an asymptotic result in the limit (2.2). The accuracy deteriorates for (γ −1)M̄2

U � 1,
but it is still satisfactory when (γ − 1)M̄2

U = 1 (f ≈ 6), where Q becomes as large
as 10, as shown in figure 9(b). For example, when (γ − 1)M̄2

U = 1, the bifurcation is
obtained at Q = 10.4 (f = 6) with the numerical analysis and at Q = 9.6 with (2.6)
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Figure 8. (a) Stability limit and (b) critical wavenumber κc given by (2.6) (triangles), by (2.11)
(squares) and by the numerical solution (circles) for β = 0 and γ = 1.05. The overdrive degree
f at threshold is also given with the numerical results.
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Figure 9. (a) Comparison of the growth rate vs. κ given by (2.6) (dashed line), (2.11)
(dashed-doted line) and by the numerical results (solid line) for β = 0, γ = 1.05, (γ −1)M̄2

U = 5

and Q = 2.8 (q = 0.07, f = 38). (b) Growth rate vs. κ at threshold for (γ − 1)M̄2
U = 1 and

γ = 1.05. The numerical results correspond to Q = 10.4 (f = 6) and are plotted as a solid
line. Equation (2.6) corresponds to Q = 9.6 and is plotted as a dashed line. Equation (2.11)
corresponds to Q = 15 and is plotted as a dashed-dotted line.

and the two functions Re[s(κ)] are quite similar near threshold. The accuracy of (2.6)
is satisfactory down to f = 3. The results Re[s(κ)] obtained with (2.11) are accurate
at very large overdrive, but they are no longer accurate even for an overdrive degree
as large as f = 38, see figure 9(a), and discrepancies become worse when f decreases
further, see figure 9(a, b). This is because Q becomes too large.

(ii) Let us now consider a more realistic case with a larger value of (γ − 1). The
situation for γ = 1.2 is presented in figures 10(a, b) and 11(a, b). Numerical results
have been obtained down to f = 1.5. They are in full agreement with the pioneering
results of Erpenbeck (1964, 1965), obtained between f = 1.05 and f = 3. Comparison
with the analytical results (2.6) and (2.11) leads to conclusions similar to those of the
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Figure 10. (a) Stability limit and (b) critical wavenumber κc given by (2.6) (triangles), (2.11)
(squares) and by the numerical results (circles) for β = 0 and γ = 1.2.
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Figure 11. Growth rate vs. κ given by (2.6) (dashed line), (2.11) (dashed-dotted line) and by
the numerical calculations (solid line) for β = 0, γ = 1.2 and (a) (γ − 1)M̄2

U = 10, Q = 1.5

(q = 0.15, f = 8.7), and (b) (γ − 1)M̄2
U = 2, Q = 5.5 (q = 0.55, f = 1.5).

preceding case. However, for the same degree of overdrive, the critical value of Q at
the instability threshold is smaller than in the case γ = 1.05 (f ≈ 2 corresponds to
Q ≈ 4 when γ = 1.2 and to Q > 10 when γ = 1.05), and the result (2.11) is better
than in the preceding case, see figure 11(a) for f = 8.7. The accuracy of (2.6) is not
as good as in the previous case γ = 1.05, but the stability limits and the critical
wavelength at moderate overdrive are still predicted with a better accuracy by (2.6)
than by (2.11), see figure 10(a, b) for f < 10 ((γ − 1)M̄2

U < 10).
(iii) For γ = 1.4, the situation is somehow different. The critical value of Q is smal-

ler than unity when f > 3, and the linear dynamics near threshold is now more accur-
ately represented by (2.11) than by (2.6) when f > 6, (γ −1)M̄2

U > 15, see figure 13(a).
But none of the results are accurate for f < 3, see figure 13(b), and the critical
wavelength is still better predicted by (2.6) than by (2.11), see figure 12(b).
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(squares) and by the numerical results (circles) for (γ − 1)β = 0 and γ = 1.4.
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Figure 13. Growth rate vs. κ given by (2.6) (dashed line), (2.11) (dashed-dotted line) and by
the numerical calculations (solid line) for β = 0, γ = 1.4 and (a) (γ − 1)M̄2

U = 40, Q = 0.45

(q = 0.09, f = 9.3) and (b) (γ − 1)M̄2
U = 10, Q = 1.35 (q = 0.27, f = 2.6).

To summarize, the distinguished limit (2.2) is convenient for describing the linear
dynamics close to the stability limits for large overdrive and when γ � 1.3. The results
for moderate overdrive are more accurate when obtained by the distinguished limit
(2.2) than by a perturbation analysis using Q as a small parameter. Since the critical
value of Q at the instability threshold increases with decreasing f , the compressibility
effects cannot be captured well by the first term of a small-Q expansion, which
is only valid for large overdrive. The sound waves are more accurately described
(whatever be Q) by a second-order approximation in the distinguished limit (2.2),
see equation (A 24) in Appendix A. However, near C-J regimes, the compressibility
effects become dominant and cannot be taken into account accurately, neither by
(2.6) nor by (2.11). This is also the case with an Arrhenius model in the presence
of destabilizing chemical kinetics, β(γ − 1) �= 0, leading to Q < 1 near threshold,
see figure 14. In this figure, a critical case is presented for γ = 1.4, β(γ − 1) = 5
and f = 1.2 which, according to the numerical results, corresponds to conditions at
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Figure 14. Growth rates vs. κ for (γ − 1)β = 5, (γ − 1)M̄2
U = 1.12 and Q = 0.55 (f = 1.2).

the instability threshold, (γ − 1)M̄2
U = 1.12 and Q = 0.55. Equation (2.11) predicts

a critical wavelength which is too large by a factor two, while (2.6) predicts that
the wave is unstable with a wavelength of the most amplified disturbance smaller
by a factor 2/3 than the critical wavelength. It is noteworthy that the branch of the
numerical solution Re(s(κ)) that bifurcates differs qualitatively from the analytical
solution (2.6). The branch leaves the origin κ = 0 from a stable oscillatory mode of
the one-dimensional case, Re(s) < 0, Im(s) �= 0. This is no longer a ‘hydrodynamic
branch’ leaving the origin κ = 0, s = 0. As shown by a recent study of Clavin &
Williams (2002) in one-dimensional geometry, detonations near threshold and near
the C-J regime (f ≈ 1) require a different theoretical approach, taking into account a
quasi-transonic character of the flow throughout the detonation structure. However,
as explained in the introduction, weakly unstable detonations for strong overdrive
could be more relevant for describing real detonations than weakly unstable C-J
waves.

5. Chain-branching kinetics
Various aspects of complex chemistry have a strong influence upon the detonation

cellular structure and may be investigated near threshold in the limit (2.2) with
equation (2.6). The linear spectrum is complex and involves a variety of branches of
solution, σ (κ). The analytical result (2.6) serves as a helpful guide for carrying out a
numerical study, including conditions near self-sustained regimes, f ≈ 1. The problem
is addressed here within the framework of the three-step model used previously by
Short & Dold (1996) and Sanchez et al. (2001):

initiation : F −→ R kI = AI exp (−βI/T ),
chain-branching : R + F −→ 2R kB = AB exp (−βB/T ),
chain-termination : R −→ P kR = 1,

where F , R and P designate fuel, radicals and products respectively, βI and βB

are the post-shock temperature-reduced activation energies of the initiation and
branching reactions, β ≡ E/RT̄ N and T is the temperature reduced by T̄ N . When
the recombination time t̄R and the recombination length, d̄R ≡ uN t̄R , are used as
references for time and length scales, the substantial derivatives of fuel and radical
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Figure 15. Numerical solution of the distribution of heat release rate in an unperturbed
planar wave for γ = 1.2, βI = 20, βB = 8, Q0 = 10, f = 2 and for different values of ξi and kNB .

mass fractions YF and YR are given by

DYF

Dt
= −wI − wB,

DYR

Dt
= wI + wB − wR, (5.1)

where wI = YF kI , wB = ρYF YRkB (ρ is the density reduced by its post-shock value),
wR = YR , and where the non-dimensional reaction rates kI and kB are reduced by the
temperature-independent recombination rate. The governing equations are the general
ones, given in Appendix C. For simplicity we assume that the heat Q̂ is released only
by the chain-termination reaction, and the notation Q0 ≡ Q̂/R̂T̂ U will be used in the
following. Realistic values of the parameters may be obtained from hydrogen–oxygen
combustion (see Balakrishnan & Williams 1994 for instance), yielding βI > βB � 1
and kIN � 1 � kBN , where kBN ≡ ABexp(−βB) and kIN ≡ AIexp(−βI ) are the
reaction rates at the post-shock temperature T̄ N . Typical values βI = 20 and βB = 8
will be kept fixed hereafter, and variations of the two other kinetics parameters AI and
AB will be considered. Following Sanchez et al. (2001), the mass-weighted induction
length is approximatively given by ξi defined as

ξi ≈ 1

kBN

ln

(
kBN

kIN

)
. (5.2)

With typical values of kBN and kIN , ξi is of order unity, so that the induction time and
the recombination time are of same order of magnitude. The parametric study takes a
more general form when ξi = O(1) and kBN � 1 are used as independent parameters
(instead of AI and AB), each of them having a specific effect on the distribution of
heat-release rate of the unperturbed planar wave, see figure 15. For a fixed value of
ξi , the stiffness of the thermal runaway increases with kBN .

Let us consider now the effects of these two parameters upon the linear spectrum
near threshold. The one-dimensional case was previously investigated by Sanchez
et al. (2001), and the muldimensional case is presented below. In order to use (2.6),
the functions ȲR = w̄(ξ ) and w′

M̄U
(ξ ) are first computed numerically from equations

(5.1) and from the isobaric conservation of energy DT/Dt = qYR , see figure 15. A
typical result obtained from equation (2.6) is presented in figure 16 where σ ≡ σ̂ t̄R

and κ ≡ k̂d̄R/ε. Figure 16 shows the existence of two wavelength domains of unstable
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Figure 17. (a) Numerical growth rate and (b) frequency for the chain-branching kinetics
with βI = 20, βB = 8, ξi = 1 and kBN = 20, γ = 1.2, Q0 = 0.8, f = 10 (q = 0.04, M2

U = 21).

disturbances. The one labelled M1 is similar to the unstable mode encountered with
an Arrhenius law, see figures 3 and 4(a). Another one, called M2, looks similar
but is shifted towards higher κ and frequencies. Reσ (κ) possesses two branches of
solutions which are the continuations of the two branches of M1, shown in figure 3(a)
(for clarity this is not shown in the figure 16). A series of marginally stable modes
with increasing frequencies is also observed (modes M3, . . .). They correspond to a
repetition of the marginal mode of the stable case shown in figure 3(a). This may be
explained from equation (2.6) as follows. According to figure 15, w̄(ξ ) is qualitatively
similar to H (ξ − ξi) exp (ξ − ξi) where H (x) is the Heaviside function. Then, w′

M̄U
(ξ )

contains a delta function δ(ξ − ξi) yielding, according to (2.8), a periodic contribution
to Z(±iκ).

The general picture of the branches of solutions presenting both unstable and
marginally stable modes being known, we turn now to numerical solutions. Since
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chain-branching kinetics for γ = 1.2, βI = 20, βB = 8, and (a) kBN = 20, ξi = 1; (b) kBN = 20,
ξi = 2; (c) kBN = 6.6, ξi = 2.

equation (2.6) is valid for disturbances with κ = O(1), one cannot expect good
quantitative agreement for κ � 1 when the wavelengths are of same order as the
detonation thickness. A spectrum Re σ (κ) obtained by numerical analysis for γ = 1.2,
q = 0.04, M̄2

U = 21 (f = 10) is shown in figure 17. A behaviour qualitatively similar
to figure 16 is observed. Instabilities appear both at a low frequency (inverse of
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the transit time) and at a higher frequency (five time larger) with a wavelength five
time smaller, approximatively. The marginally stable modes in figure 16 (modes M3,
. . . ) are now stable, and their stability is reinforced on decreasing the wavelength
(increasing κ). However one may expect that such modes may become unstable for
particular conditions of the chemical kinetics. We now investigate this question.

The stability diagrams ‘Q0 versus f ’ for modes M1, M2 and M3 are shown in
figure 18(a–c), exhibiting clearly the effects of the the two parameters ξi and kBN .
The multidimensional instability is observed at a critical Q0 smaller than that for
the one-dimensional instability (the linear growth rate is strictly positive at κ = 0 in
regions labelled ‘unstable 1D’ and negative elsewhere). In figure 18(a) where kBN = 20
and ξi = 1, the mode M1 is unstable before M2, irrespective of the values of the
overdrive factor f . As shown in figure 18(b), this is no longer the case for sufficiently
large overdrive when the mass-weighted induction length is increased, ξi = 2: M2 and
M3 now become unstable before M1 when f > 3. Under such conditions, small cells
pulsating with a high frequency appear first! This is a consequence of the multiple-step
chemistry involving a distribution of heat-release rate whose variations are shown in
figure 15. However, as shown in figure 18(c) where ξi = 2 and kBN = 6.6, a decrease
of kBN returns to a situation similar to figure 18(a) where the mode M1 becomes
unstable before M2 and M3 for all f .

Concerning the mode M1, a comparison of the numerical results with (2.6) leads
to the same conclusions as in the preceding section for an Arrhenius law. More
particularly the same qualitative change of the branch of solution that bifurcates,
mentioned at the end of § 4 and shown in figure 14, is also observed for small overdrive
when approaching C-J conditions.

6. Conclusions
The linear spectrum for transverse instability of a gaseous detonation involves a

complex set of branches of modes. A detailed study of this spectrum near the
instability threshold (a first step toward a weakly nonlinear analysis of cellular
structures) has been carried out for both a one-step Arrhenius law and multiple-step
chemistry, combining numerical and analytical results.

A general finding for multiple-step chemistry having an induction time of the
same order of magnitude as the recombination time (see figure 15), is that there
are transverse oscillatory instabilities for different domains of wavelengths and
frequencies which are separated by domains where the wave is linearly stable (see
figure 17). Increasing either the induction time (compared to the recombination time)
or the stiffness of the thermal runaway leads to instability to transverse disturbances
with small wavelengths and high frequencies, coexisting in general with unstable
disturbances with long wavelengths (much larger than the detonation thickness)
and low frequencies (of same order as the inverse of the transit time). This could
be related to two-level cellular structure, with a sub-structure contained in a main
structure, observed, for example, in some experiments with gaseous nitromethane,
see Presles et al. (1996). According to our numerical analysis, instability may well
appear first at small wavelength and high frequency in some conditions for f > 3,
see figure 18(b). Instabilities at long wavelengths and low frequencies are similar to
those observed with a one-step Arrhenius law near threshold.

The distinguished limit (2.2) provides analytical results with a clear physical
meaning, particularly helpful for detonations sustained by complex chemistry. A
systematic comparison with numerical results for the so-called ‘hydrodynamical
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instability’ (one-step Arrhenius kinetics with a zero activation energy) shows that
these results are accurate when γ � 1.3 down to moderate overdrive, f ≈ 3. They
are qualitatively satisfactory even below f = 3 and, in any case, are much better
than those obtained with a simple expansion for small heat release, which is accurate
for the stability limits only at large overdrive. The conclusions are similar for the
low-frequency mode of a detonation supported by a multiple-step chemistry.

The physical mechanisms responsible for the cellular structures are clearly exhibited
for large and moderate overdrive within the framework of a Newtonian approximation
because the compressible effects and the isobaric gas expansion by heat release
become distinguishable. The main advantage of the perturbative analysis based on
the distinguished limit (2.2) is to take into account accurately the compressibility
effects at the first order, near the stability limits where the heat release devided by
the post-shock enthalpy, Q̂/cpT̄N , becomes as small as (γ − 1), so that Q̂/RT̄N is of
order unity. However near the C-J regime, f < 1.3, the compressibility effects become
dominant near threshold, new behaviours are observed in the numerical spectrum,
and a different theoretical analysis is required, see Clavin & Williams (2002).

Appendix A. Outline of the analysis of Clavin & He (2001)

Non-dimensional variables are u = û/ūN , v = εv̂/ūN , p = p̂/p̄N , T = T̂ /T̄ N and
α = α̂/d̄ , where û, v̂, p̂ and T̂ denote the longitudinal and transverse velocities, the
pressure and the temperature (overbars are for the unperturbed state and subscript
N denotes the post-shock state). Scaling for v̂ results from the large jump of the flow
velocity across the wrinkled shock due to a large density jump, ρ̄N/ρU ≈ 1/ε2, where
ρU denotes the initial density of the gas. Boundary conditions for the linear solution
of the reactive Euler equation are the Rankine–Hugoniot shock conditions at ξ = 0,
and when the piston is at infinity in the burned gas, a boundedness condition for the
acoustic perturbations at ξ → ∞. For linearly unstable modes this last condition is
equivalent to a radiation condition. The shock conditions, see equations (C5)–(C9) in
Appendix C, take the form

δuN ≈
[
1 +

1

M2
U

− (γ − 1)

2

]
α̇τ , δvN ≈

[
1 − 1

M2
U

]
∇α, (A 1)

δpN ≈ −2ε2α̇τ , δTN ≈ −(γ − 1)α̇τ , (A 2)

valid in the linear aproximation up to O(ε2), and where α̇τ ≡ ∂α/∂τ , and ∇ denotes the
gradient in the transverse directions. In the same approximation and after elimination
of the density, the linear reactive Euler equations take a simple form when the
mass-weigthed coordinate ξ is used, see Clavin et al. 1997 and Clavin & He 2001:

ε2

[(
∂

∂τ
+

∂

∂ξ

)
δu − δν

dū

dξ

]
= −∂δp

∂ξ
, (A 3)(

∂

∂τ
+

∂

∂ξ

)
(∇ · δv) = −ū∇2δp, (A 4)

1

γ

ū

p̄

(
∂

∂τ
+

∂

∂ξ

)
δp +

∂

∂ξ
(δu + ūδν) = q(δw + δνw̄), (A 5)

where δν(ξ, η, τ ) ≡
∫ ξ

0
∇ · δv dξ ′. In the burned gas the reaction source terms w̄

and δw vanish, the unperturbed solution is uniform, and an exact solution to the
linear equations (A3)–(A5) is easily obtained. The solution is a superposition of a
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sound wave (superscript a) and an isobaric entropy–vorticity wave (superscript i)
δu = δu(a) + δu(i), δv = δv(a) + δv(i), δp = δp(a) and δp(i) = 0. Written in Fourier
representation with the notation of (2.3), δp = δp∗(ξ ) exp(sτ + iκ · η), the d’Alembert
equation yields {

1

γ

ūB

p̄B

(
d

dξ
+ s

)2

− 1

ε2

d2

dξ 2
+ ū2

Bκ2

}
δp∗(ξ ) = 0. (A 6)

The solution δp∗(x) = δp∗
B exp(ilξ ) of (A 6) may be written in a convenient form in

terms of ε2 ≡ (ūB/γ p̄B)ε2 and �2 ≡ (γ ūBp̄B)κ2,

il =
ε2s ± ε

√
s2 + �2 − ε2�2

1 − ε2
. (A 7)

When (s2 + �2) is different from zero and of order unity, il is of order ε in the
limit ε → 0, il = ±ε

√
s2 + �2 + O(ε2). The situation is different in the limit (2.2)

where q = O(ε2), p̄B = 1 + O(ε4) and ūB = 1 + q + O(ε4). As we will see, s

and � are of order unity but (s2 + �2) is of order ε2, see equation (A 11) below,
leading to il = O(ε2), il = ε2il2 with il2 = O(1). The longitudinal length scale of
the pressure is then larger than the detonation thickness by a factor 1/ε2, expressing
that the sound waves propagate in the burned gas in a direction quasi-parallel to
the unperturbed shock. Anticipating that the same scaling is also valid throughout the
detonation structure, see discussion below equations (A 14) and (A 16), we find that
the leading-order pressure may be expressed in terms of the post-shock fluctuations
(A 2),

δp∗(ε2ξ ) = −2ε2sα∗ exp(iε2l2ξ ) + O(ε4). (A 8)

The entropy–vorticity wave in the burned gas is the solution of equations (A 3)–(A 5)
with w̄ = 0, δw = 0, ū = ūB = 1 + q + O(ε4) and δp = 0,(

∂

∂τ
+

∂

∂ξ

)
δu(i) = 0,

(
∂

∂τ
+

∂

∂ξ

)
δv(i) = 0,

∂

∂ξ
δu(i) + ūB∇ · δv(i) = 0. (A 9)

According to equation (A 8), the amplitude of the acoustic flow is small, of order
ε2 and the leading-order flow field is fully controlled by the entropy–vorticity wave,
(A 9) yielding, when the boundary conditions (A 1) are used,

δu
(i)
0 =

∂α

∂τ
(τ − ξ, η), δv

(i)
0 = ∇α(τ − ξ, η). (A 10)

The continuity equation, the third equation in (A 9), is ∂δu
(i)
0 /∂ξ +∇ · δv(i)

0 = 0, yielding
the wave equation (2.5) for the evolution of the front,

s0 = ±iκ. (A 11)

The leading-order frequency of the oscillatory modes is thus given by the isobaric
entropy–vorticity wave of a strong inert shock. With the notation of (2.4), and
introducing q2 = O(1), q ≡ ε2q2, one then obtains from (A 7),

il2 = s0 −
[
2s0s2 +

(
γ − 1

ε2
+ q2 − 1

)
κ2

]1/2

+ O(ε2), (A 12)

where by definition Re[. . .]1/2 > 0, and the minus sign in front of [. . .]1/2 is chosen in
order to satisfy the boundedness of the acoustic waves at ξ → +∞, Re(il2) < 0. The
presence of q2 in the square root points out the difference from a simple expansion
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for small heat release. This comes from equation (A 7) where (s2 + �2) = O(ε2) and
from the expressions for ε and � with ūB = 1 + q + O(ε4).

The flow velocity in the burned gas is then obtained from (A 1)–(A 5) and (A 8) in
the form

δu∗(i) =
(
s0 + ε2δu

∗(i)
B2

)
α∗ exp(−sξ ), ∇ · δv∗(i) =

(
−κ2 + ε2∇ · δv∗(i)

B2

)
α∗ exp(−sξ ),

δu∗(a) = 2ε2il2α
∗ exp(iε2l2ξ ), ∇ · δv∗(a) = −2ε2κ2α∗ exp(iε2l2ξ ),

}

(A 13)

valid up to order ε2, where δu
∗(i)
B2 and ∇ · δv∗(i)

B2 are constants of integration that
are linked together by the continuity equation, the third equation in (A 9). The
complete flow field throughout the detonation structure is determined by introducing
the splitting

δu∗ ≡ δU ∗(i)(ξ ) + δu∗(a)(ε2ξ ), δv∗ ≡ δV ∗(i)(ξ ) + δv∗(a)(ε2ξ ). (A 14)

According to (A 8), the longitudinal pressure gradient is of order ε4 in the burned
gas. Anticipating that this is also true everywhere behind the shock, we conclude that
the pressure variation throughout the reaction zone is smaller than the post-shock
fluctuations, and the pressure is quasi-uniform throughout the detonation structure.
After subtracting out the acoustics, equation (A 5) leads to the isobaric approximation
of low Mach number, the divergence of the flow (δU ∗(i); δV ∗(i)) is balanced by the
rate of gas expansion due to heat release qw,

dδU ∗(i)
/
dξ + u∇ · δV ∗(i) ≈ qδw, (A 15)

yielding

d

dξ

[
δU ∗(i) + ū(ξ )

∫ ξ

0

(
∇ · δV (i)

)∗
dξ ′

]
≈ q

(
δw∗ + δν

∗(i)
0 w̄

)
, (A 16)

where the relation dū/dξ = qw̄ has been used. Equation (A 16) is valid up to order
ε2δα. The post-shock fluctuations of pressure (A 2) are fully absorbed by the sound
wave in the burned gas, and the longitudinal variations of the pressure through
the detonation structure are of order ε4. Then, the first two orders of the quantity
∇ · δV (i) are, according to (A 4), simply advected by the flow field from the shock,
(∂/∂τ + ∂/∂ξ )∇ · δV (i) = O(ε4), leading to

∇ · δV ∗(i) =

[
−1 + ε2

(
2 +

1

ε2M2
U

)]
κ2α∗ exp(−sξ ) + O(ε4), (A 17)

where the boundary condition for ∇ · δV ∗(i) at ξ = 0 given by (A 1) and (A 13) has
been used. The boundary condition δU ∗(i)(ξ = 0) is obtained in the same way, and a
forward integration of equation (A 16) with respect to ξ from the shock ξ = 0 then
yields

δU ∗(i)(ξ ) −
[
1 +

1

M2
U

− γ − 1

2

]
sα∗ + 2ε2il2α

∗ + ū(ξ )

∫ ξ

0

(
∇ · δV (i)

)∗
dξ ′

= q

∫ ξ

0

[
δw∗(ξ ′) + δν

∗(i)
0 (ξ ′)w̄(ξ ′)

]
dξ ′ + O(ε4), (A 18)

into which equation (A 17) and the expansion (2.4) have to be introduced. The
expression δU ∗(i)(ξ ) in equation (A 18) contains two kinds of terms at the end of
the reaction when ξ � 1, δw∗(ξ ′) = 0, w̄(ξ ′) = 0: the first do not vary with ξ while
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the second do depend on ξ through exp(−sξ ) exhibiting the same fast oscillations
exp(±iκξ ) damped on a longer length scale as for δu∗(i) in (A 13), exp(−ε2s2ξ ) with
Re s2 > 0 for unstable cases. By definition, the limit of δU ∗(i) when ξ � 1 must be
equal to δu∗(i). The matching condition then requires that the sum of all constant
terms must be set to zero, yielding

2ε2(il2) − s

[
1 +

1

M2
U

− γ − 1

2

]
+ (1 + q)

[
−1 + ε2

(
2 +

1

ε2M̄2
U

)]
κ2

s

=
q

α∗

∫ ∞

0

[
δw∗(ξ ) + δν

∗(i)
0 (ξ )w̄∗(ξ )

]
dξ + O(ε4). (A 19)

Matching the oscillatory terms gives the constant of integration δu
∗(i)
B2 in (A 13).

Compressional heating being negligible at the leading order, the integral on the
right-hand side of equation (A 19) is computed from the equations for temperature
and chemical species which form in the quasi-isobaric approximation a closed set of
equations whose solution expresses the fluctuations of the distribution of heat-release
rate in terms of the history of the fluctuations of front position and velocity, yielding,
see Clavin et al. (1997),

∂

∂τ

∫ ∞

0

[
δw + δν

(i)
0 w̄

]
dξ = ∇2α(τ ) −

∫ ∞

0

w̄′
M̄U

(ξ )
∂2

∂τ 2
α(τ − ξ ) dξ

−
∫ ∞

0

w̄(ξ )

[
1 + ξ

∂

∂τ

]
∇2α(τ − ξ ) dξ + O(ε2), (A 20)

which may be written at the leading order and using the notation of (2.8) as

1

α∗

∫ ∞

0

[
δw∗ + δν

∗(i)
0 w̄∗

]
dξ =

κ2

s
[−1 + Z(s0)] + O(ε2). (A 21)

An equation for the linear growth rate s2 is obtained from (A 19) and (A 21),

−s0

κ

√
2
s0s2

κ2
+

γ − 1

ε2
+ q2 − 1 − s0s2

κ2
+ 1 − 3(γ − 1)

4ε2
=

q2

2
Z(s0), (A 22)

where, by definition Re(
√

. . .) > 0. The two roots of the quadratic equation obtained
from (A 22) are

s2 = s0

[
3(γ − 1)

4ε2
+

q2

2
Z

]
± s0

√
γ − 1

2ε2
+ q2(Z − 1). (A 23)

The solution of (A 22) must satisfy the relation Re[s2 − s0(q/2)Z] � 0 ⇒
Re[±s0

√
. . .] < 0. According to (A 23) and using the relation (ε2/q)

√
(γ − 1)/2ε2 =

(1/Q)
√

2ε2/(γ − 1) with 2ε2/(γ −1) ≈ [1+2/(γ −1)M̄2
U ], this solution yields equation

(2.6). The acoustic fields are then obtained from (A 12), (A 13) and (A 23),

iε2l2 = s0ε
2

[
2 ±

√
γ − 1

2ε2

√
1 + Q(Z − 1)

]
, (A 24)

where s0 = ±iκ and the ± sign inside the brackets of (A 24) has to be choosen as above,
Re[±s0

√
. . .] < 0 ⇒ Re(il2) � 0. According to (A 24), the square-root term in equation

(2.6) describes a damping by coupling sound waves with heat release. According to
equations (A 18) and (A 22), this term comes from the boundary value δu∗(a)(ξ = 0)
and thus describes what is called in the thermo-acoustic literature a ‘velocity coupling’,
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while, according to equations (A 19)–(A 23), the first term on the right-hand side of
equation (2.6) describes the effect of a quasi-isobaric expansion due to heat release.
This last mechanism could be considered in gaseous detonations as similar to the
‘Darrieus–Landau’ instability in flames, but with the drastic difference that it results
from a modification to the inner structure of the wave.

The form of the square-root term in equation (A 24) illustrates that the sound waves
cannot be accurately captured by a simple expansion in powers of the heat release
when Q is not small, i.e. when q is not much smaller than (γ − 1). This is precisely
the case at the instability threshold for moderate and small overdrive, see figures 8(a),
10(a), 12(a) and 14.

Appendix B. Time and length scales

For an Arrhenius law ŵ = B̂(1 − λ) exp(−Ê/RT̂ ), time and length scales in Clavin
& He (2001) are t̄N = exp(β)/B̂ and d̄N = ūN t̄N , where β = Ê/RT̄ N . Time and length
scales in Short & Stewart (1999) are

t̄1/2 ≡ d̄1/2

c̄N

, d̄1/2 ≡ 1

B̂

∫ 1/2

0

¯̂u

(1 − λ)
exp

(
Ê

R
¯̂
T

)
dλ,

where c̄N is the post-shock sound speed of the unperturbed solution. The relation
between the two scales is obtained by computing the following integral:

I = M̄N

∫ 1/2

0

ū

(1 − λ)
exp

(
β

1 − T̄

T̄

)
dλ. (B 1)

At the leading order in the limit (3.3), we obtain ū ≈ 1, T̄ ≈ 1 and therefore
I ≈ M̄N ln(2).

Appendix C. Numerical method
C.1. Equations

The general equations are the Euler reactive equations that describe the flow behind
the leading shock. The gas is considered to be ideal with constant specific heats. A
coordinate system is adopted in which the planar shock preceding the unperturbed
detonation is located at the plane x̂ = 0, with the unshocked gas occupying the region

x̂ < 0. With ∇̂ denoting the transverse gradient operator in this coordinate system,

the substantial derivative becomes D/Dt̂ = ∂/∂t̂ + û∂/∂x̂ + ∇̂ · v̂. The equations for
conservation of mass, longitudinal and transverse momentum, energy and species
then become, respectively,

1

ρ̂

Dρ̂

Dt̂
+

∂û

∂x̂
+ ∇̂ · v̂ = 0, (C 1)

ρ̂
Dû

Dt̂
= −∂p̂

∂x̂
, ρ̂

Dv̂

Dt̂
= −∇̂p̂, (C 2)

1

γ

1

p̂

Dp̂

Dt̂
− 1

ρ̂

Dρ̂

Dt̂
=

Q̂

cpT̂
ŵ, (C 3)

DYi

Dt̂
= ŵi, i = 1 . . . N, (C 4)
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where Yi denotes the mass fraction of chemical species i in the N -component gas
mixture, ρ̂ŵi the mass rate of production of chemical species i per unit volume
and ρ̂Q̂ŵ the rate of energy release per unit volume by the chemical reactions, Q̂

representing the total amount of energy released per unit mass of the gas mixture.
Pressure, temperature and density are related by the ideal gas law, p̂/ρ̂ = RT̂

(R = cp − cv).

C.2. Boundary conditions

Linearized boundary conditions at the shock are given by

δρ̂N

ρ̄N

= − 4

(γ + 1)M̄2
U

1

ūN

∂α̂

∂t̂
, (C 5)

δp̂N

p̄N

=
−4γ M̄2

N

γ + 1

1

ūN

∂α̂

∂t̂
, (C 6)

δT̂N

T̄N

= −2
γ − 1

γ + 1

1

ūN

∂α̂

∂t̂
, (C 7)

δûN

ūN

= 2
M̄2

U + 1

(γ + 1)M̄2
U

1

ūN

∂α̂

∂t̂
, (C 8)

δv̂N

ūN

= 2
M̄2

U − 1

(γ − 1)M̄2
U + 2

(∇̂α̂). (C 9)

A shooting method is applied by using the boundary conditions (C5)–(C9) plus a
compatibility condition in the burned gases expressing that the flow of the entropy–
vorticity wave must be divergence free. Written in the notation of Clavin et al. (1997),

δφ̂(x̂, ŷ, t̂) = δφ̂∗(x̂)k̂,σ̂ exp(σ̂ t̂ + ik̂ · ŷ), this compatibility condition is

±
√

1 + S2
δp̂∗

B

ρ̄B c̄BūB

+ S
δû∗

B

ūB

− ik̂ · δv̂∗
B

k̂ūB

M̄B√
1 − M̄2

B

= 0, (C 10)

where S ≡ σ̂ /(c̄B k̂
√

1 − M̄2
B), c̄B is the sound speed in the burned gas, and the sign

(±) must be chosen to enforce boundedness of acoustic waves for x̂ → +∞. We
show below that this condition corresponds to a radiation condition for an unstable
perturbation (Re(σ̂ ) > 0).

C.3. Discussion of the rear boundary condition

By using the notation p̂B(x̂, ŷ, t̂) ∝ exp(il̂x̂ +ik̂ · ŷ+ σ̂ t̂), where σ̂ = Re(σ̂ )+iω̂, ω̂ > 0

(l̂ is a complex number and k̂ is real), the longitudinal component of the propagation
velocity (relative to the shock) of a sound wave in the burned gas is

ûg = ¯̂uB − c̄B

Re(l̂)√
[Re(l̂)]2 + k̂2

, (C 11)

where ¯̂uB is the flow velocity in the burned gas of the unperturbed solution. The
longitudinal wave vector l̂ is given by (A 24) with s0 = +iκ , κ > 0, yielding

ug ≡ ûg

ūN

= −
[
1 ±

(
γ − 1

2ε2

)1/2

Re
√

1 + Q[Z(+iκ) − 1]

]
+ O(ε2), (C 12)

where by definition Re(
√

. . .) > 0, and the ± sign must be choosen to satisfy a bound-

edness condition for sound waves in the burned gas, ±Im
√

1 + Q[Z(+iκ) − 1] > 0.
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Numerical results show that the right-hand side of (C 12) is systematically positive
for an unstable situation, Re(s) > 0 where Re(s) is given in (2.6). The acoustic waves
associated with unstable modes of a gaseous detonation are thus outgoing, ug > 0,
while they are incoming for the neutral modes of a pure shock, ug < 0, see equation
(C 12) with Q = 0 and where (γ − 1)/2ε2 < 1. This can be easily shown in the limit
(3.3) for an ‘hydrodynamic instability’, β(γ −1) << 1; the general case is more tedious
to carry out. Equations (3.1) and (C 12) yield

ug =

[
− 1

(γ − 1)M2
U

− Q

2

(
κ

κ2 + 1

)2

(κ2 − 1)

]
+ h.o.t. (C 13)

Except for a positive factor, this expression is the same as (3.2), showing that the
sound waves are outgoing in unstable cases.
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